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Using Geometric Features to Represent Near-Contact Behavior in
Robotic Grasping

Eadom Dessalene1, Yi Herng Ong2, John Morrow2, Ravi Balasubramanian2, Cindy Grimm2

Abstract— In this paper we define two feature representa-
tions for grasping. These representations capture hand-object
geometric relationships at the near-contact stage — before the
fingers close around the object. Their benefits are: 1) They
are stable under noise in both joint and pose variation. 2)
They are largely hand and object agnostic, enabling direct
comparison across different hand morphologies. 3) Their format
makes them suitable for direct application of machine learning
techniques developed for images.

We validate the representations by: 1) Demonstrating that
they can accurately predict the distribution of ε-metric values
generated by kinematic noise. I.e., they capture much of the
information inherent in contact points and force vectors without
the corresponding instabilities. 2) Training a binary grasp
success classifier on a real-world data set consisting of 588
grasps.

I. INTRODUCTION
Fundamentally, the goal of a grasping metric or repre-

sentation is to reduce the complex physics of hand-object
interaction down to a small set of values that can be
reasoned about. Desirable properties include: Stability with
respect to noise (joint angles, pose uncertainty, object shape
variation), concise, useful for prediction, efficient to calcu-
late, hand morphology agnostic, and suitable for machine
learning/control strategies.

In this paper we define two feature representations that
are driven by the need to describe near-contact grasping
(just before the fingers close) in a form suitable for machine
learning. Broadly speaking, these representations capture the
geometric relationships between the surfaces of the fingers
and the object as they come into contact. By capturing
data in a grid structure (rectangular set of samples per
finger pad/palm) we can directly employ existing image-
based machine learning algorithms.

More specifically, for every potential finger contact surface
(typically the pad of each finger and the palm, but we can
include all of the finger links if desired) we define a grid of
points. For each of those points, we record the distance (and
optionally, orientation) to the object (see Figure 1). All of
these grids can be combined into a single 2D “image” using
tiling.

Our two feature representations differ by how they cal-
culate distance. In the first representation, called the signed
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distance feature, we use a Signed Distance Function (SDF)
around the object to calculate the distances. The second
feature representation, called the wedge distance feature,
uses the closest distance within a wedge projected out from
the finger pad. This approach more accurately captures the
potential contact surface (assuming the finger pad is moving
in the direction it is facing) at increased computational cost.

SDFWedge

Distance map
Finger 1

Further

Closer

Grid samples
(red dots)

SDFWedge

SDFWedge

Fig. 1: Example distance maps as the hand closes. Each red
region on the hand generates one map (each red dot on the
finger generates one pixel, map for circled finger link shown).
Orange is further away, black touching.

Existing metrics tend to be very concise (usually just a
handful of numbers) and quick to compute. However, many
of the most common metric approaches are based on some
form of analyzing contact points, which means they cannot
be used before contact and are often unstable. This instability
arises in practice because of small variations in pose, object
surface, or joint angles that cause changes in the number
and location of these contacts. Continuous metrics based
on joint angles are more stable but do not transfer well
between hand morphologies and are an indirect measure of
the grasp. In our representation we trade off conciseness and
computational efficiency for stability and ease of including
in machine learning algorithms.

Specifically, by construction our representations tend to
be very stable and continuous — small changes in pose,
finger pad location, or surface result in correspondingly small
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changes in distance. Additionally, distances close to zero
capture contact in non-abrupt manner. This continuity is also
helpful for convergence of machine learning algorithms.

The computation time of our features is linear in the
number of samples needed (SDF) or samples times number
of points needed to represent the object (Wedge). These
features are also easy to parallelize or put on a GPU.

Of consideration is that this feature representation could
be implemented directly in hardware using a set of time of
flight or electrical field sensors, enabling real-time control
without explicitly modeling the object.

A feature or metric should also be predictive — i.e.,
useful for evaluating grasps. We validate our features by 1)
analyzing their ability to predict the expected values of the
ε-metric and by 2) using it to predict whether or not a real-
world grasp will succeed.

The ε-metric prediction is conducted in simulation with
three different hand morphologies, ranging from simple to
complex. We use simulation to generate, for each grasp,
multiple ε-metric values by adding noise to both pose of
the hand and the finger joints. We then learn the average and
expected variation of the ε-metric . In essence, this validation
test checks that our representations contain within them the
information the ε-metric is based on. On a practical note,
this learned prediction could be used in practice instead of
actually generating the expected value of the ε-metric (which
is computationally expensive).

Our real-world validation uses a database of 588 grasps
tested on the Barrett Hand using four different objects. Since
we know where the hand and the object are, we can calculate
our features for each grasp. We demonstrate that a simple
CNN classifier is capable of learning whether or not a grasp
will be successful.

This paper is organized as follows: Related work is dis-
cussed in Section II. In Section III we define our features and
the algorithms used to compute them. Section IV describes
the setup of our ε-metric and real-world validation tests.
Results follow in Section V.

II. RELATED WORK

Early analytical approaches to robotic grasping repre-
sented a grasp as a set of contact wrenches, relying on
exact knowledge of contact locations and orientations, as
well as knowledge of the center of mass of the object and
friction coefficients of the object [1], [2], [3]. However, these
contact representations tend to fail in the real world when
exposed to both kinematic and visual uncertainty. They also
suffer from lack of reproducibility, in that the contacts are
difficult to consistently reproduce in reality. The ε-metric is
a common metric that uses these contact representations to
assess the quality of a force-closure grasp. However, previous
works have demonstrated that the ε-metric is a poor indicator
of grasp stability in the real world [4]. In this work, we
demonstrate that our novel feature representations signifi-
cantly outperform the ε-metric in predicting the success of a
grasp in reality.

More recently, many supervised learning approaches to
grasp evaluation or planning have formulated the represen-
tation of a grasp as a low-dimensional projection of a full
gripper configuration at the end of grasp execution, in order
to keep the grasp planning problem tractable and allow for
easier manual annotation [5], [6], [7], [8]. A major drawback
to these lower dimensional representations is the problem
of scalability to more complicated robotic hands. While
Lenz et al suggest the oriented rectangle serve as a lower
dimensional representation of the opposing ends of a multi-
fingered hand, this suggestion fails to scale to hands more
anthropomorphic in nature. Another drawback lies in how
this feature representation constrains the approach vector
of the hand, forcing the robot to execute each grasp in a
direction orthogonal to the plane of the image. This is a key
limitation, as it possibly prevents the grasp approach vector
from aligning with the principal axis of the object, a grasping
strategy humans commonly employ [9].

There are a number of existing works that define alter-
native feature representations based off depth, similar to
our feature representation proposals [10], [11], [12], [13].
Andrea ten Pas et al represent each grasp candidate as the
geometry of the object along the closing plane of a 1-DOF
gripper, encoding the resultant two-dimensional image using
the HOG descriptor [14]. Gualteri et al compute various
2D projections of the object to be grasped along three
directions: the hand approach vector, the axis of major
curvature of object surface, and the vector orthogonal to
the hand approach vector [10]. Kappler et al take a similar
approach, computing a 2D projection of the object onto a
plane defined by the intersection between the object and the
hand approach vector [12]. Varley et al represents a grasp
candidate as a set of simulated RGB-D patches at each palm
and fingertip location [13]. Of the aforementioned feature
representation, the approach in [13] is closest to ours.

III. FEATURE REPRESENTATION DEFINITIONS

We now formally define our feature representations and
their corresponding implementations. Both techniques are
based on distance calculations from a grid of points on the
hand surface, but differ in how they represent the object. The
Signed Distance Feature converts the object to a Truncated
Signed Distance Function, the Wedge Distance Feature rep-
resents the object as a uniformly distributed set of points
on the object’s surface. This conversion only has to happen
once; we transform the hand into object space to do the
distance calculations.

The Signed Distance Feature is computationally efficient,
but does not restrict the distances to those points on the object
that the hand will actually encounter. The Wedge Distance
Feature restricts the distance calculation to a “wedge” radiat-
ing from the grid point — the points on the object the hand is
likely to encounter. This is computationally more expensive,
and there may be no closest point in that direction.

We first discuss how the grids on the hand are generated,
then the two feature representations. We close with possible
extensions to the basic feature representations.
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A. Generating the Hand Grid Points

This is a general-purpose algorithm (see GENERATE
GRID()) for placing a grid of points on a part of the robot
hand (eg a finger-tip or the palm). The algorithm essentially
projects a grid onto the hand geometry.

The number of grids, their resolution, and where they
are placed are user-dependent. We assume that, for each
grid, the user provides the center point and two vectors
that define a tangent plane with the desired width, height,
and orientation of the grid. From this, a grid of points
is generated in the tangent space at the desired resolution
(generateGrid). Each point is then projected onto the robot
geometry in the direction of the tangent plane’s surface
normal (morphPoints). This defines a set of points (from the
robot geometry). This projection only has to happen once.

For the results presented here, we used a 20 × 20 grid
sampling rate, one grid for each finger link, placed so that
it spans the link, and one grid for the palm (Barrett and
Shadow, see Figure 2). We calculated these values shortly
before the fingers made contact.

Algorithm GENERATE GRID()
Input:

Mesh mhand

X,Y Resolution
N User specified points pl, �xl, �yl, l ∈ [1, N ]

Output:
Grid Points linkli,j , l ∈ [1, N ], i ∈ [1, X], j ∈ [1, Y ]

1: for i in [1, N ] do
2: gplane ← generateGrid(mhand,pi,�xi,�yi, X , Y )
3: linkli,j ← morphPoints(linkli,j , mhand, gplane)

4: return {linki,j}1,N

B. Signed Distance Feature

The signed distance feature requires the pre-computation
of a Truncated Signed Distance Field (TSDF) d : R3 → R of
the object. This function returns the (approximate) distance
of a point x ∈ R

3 to the nearest point on the surface of the
object in constant time.

The TSDF is defined on a 3D volume grid placed around
the object. The object is placed at the origin and the grid
size in each direction is defined by the maximum span of
the hand, or by the object’s size in that direction plus 1/5 of
the hand span, whichever is larger. This ensures that there
is enough “padding” around the object to support reliable
distance calculations (if the point x lies outside of the grid
it is projected to the closest point on the grid).

There is a trade-off between accuracy and memory storage
requirements. For this paper we used volumes with a field
size of 60cm×60cm×60cm, using a voxel size of 0.0025m.
Note that standard hierarchical techniques (e.g., oct-trees)
could be applied here.

To calculate the feature at each time point, we transform
the grid points based on the current hand configuration
(matrix transformation Ml for each link), then map the

grids to object space using the hand pose M relative to the
object (Transform). The full algorithm is shown in SIGNED
DISTANCE FEATURES().

It is straightforward to implement this on a GPU using 3D
texture lookup.

Algorithm SIGNED DISTANCE FEATURE()
Input:

Meshes mhand, SDFobj

Grid points linkli,j
Matrices Ml, M
SDF of object f

Output:
Signed Distances handdists

1: handdists ← []
2: for pi,j in linkli,j do
3: pi,j ← Transform(Ml, M linkli,j)
4: for p in pi,j do
5: linkdists.append(f [pi,j ])
6: handdists.append(linkdists)
7: return handdists

C. Wedge Distance Features

Mathematically, we define the wedge as a cone of rays
emanating from the grid point, with the spread of the cone
set so that the width of the cone at 1/2 of the hand span is
the width of the link. In our implementation we model this
as a set of 30 rays, sampled uniformly from the cone and
intersected with the object. The algorithm is identical to the
SDF algorithm, except we replace the f calculation with a
set of ray casts (30 total in our implementation). If a ray fails
to hit the object we mark that as a miss, and store a value
of -1 at the location of the grid.

These features could be implemented on the GPU by
rendering the object from the viewpoint of the grid points.

D. Potential alternatives and additions

The first alternative we propose is adding orientation
information — how the surface normals of the grid points on
the robot hand are aligned with the object (dot product). We
already have the surface normals for the robot geometry. For
the SDF representation the normals are easily calculated as
the (normalized) gradient of the Signed Distance Function.
For the Wedge representation we can return that information
along with the ray intersect/store the normal with the object
points.

While a temporal stream of the features was unnecessary
for either of the validation tasks, utilizing a temporal stream
of these features may prove useful when computing finger
control strategies as in [15]. Capturing temporal data as the
hand is closed is simply a matter of recording a sequence of
grid values, similar to creating a video.

For the tests in this paper we found that including rela-
tive orientation information was not useful, as it increased
convergence time and reduced prediction accuracy.
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Barrett Hand PR2 Hand

Object 
displacement

Hand joint noise

Shadow Hand

Grid samples

Fig. 2: Hands (Barrett, PR2, Shadow) and added noise for
the validation test. Top row, moving the object, middle row,
joint angle variation, bottom row, grid samples.

One additional piece of information that could be added to
this representation is the relative locations of the grids with
respect to each other (and to the object as a whole). This,
combined with the surface-orientation map, would contain
information similar to the current force-closure metrics.

IV. VALIDATION

In this section we describe the motivations and methods
behind our validation tests.

Our first validation test focuses on behavior under kine-
matic noise, varying hand morphology, ability to mimic an
exiting grasp metric, and suitability for machine learning.
For this test we used simulation data as ground truth, since
we are not using this test to show that our features are useful
for predicting behavior “in the real world”.

Our second validation test is a classic grasp prediction
test (success/failure) using real data. We varied both the
objects and the relative hand-object pose in a systematic
way. Because we know the full geometric relationships of
the grasp, we can calculate the features.

For both tasks we apply off-the shelf separate CNNs (with
near-identical architectures) for each robotic hand to both
sets of features, tested using 3-fold cross validation.

A. Validation test 1: Comparison to existing metric

We describe the hands, objects, and grasps used, the noise
model used to generate variations, and the deep learning
model. Note that the goal is to learn the expected value of
the ε-metric — mean and standard deviation.

1) Hands, objects, and grasps: To demonstrate the hand-
agnostic nature of our feature representations we conduct
three experimental simulations using hands with varying
kinematic structures: The fully anthropomorphic 20-DOF
Shadow Hand, the opposable 4-DOF Barrett Hand, and the

PR2 Gripper, (see Figure 2). We placed grids on each link: 2
for the PR2, 7 for the Barrett, and 15 for the Shadow Hand.

The objects (shown in Figure 3) used to perform our
experiments were selected from a set of fundamental shapes,
with three sizes for each one.

Our grasps were specified as pre-shapes (the grasps shown
in Figure 2). To generate the final pose, the grasp is executed
in GraspIt!, which essentially closes the fingers at equal
speeds until they make contact with the object. This does not
reflect “real life”, because the object would normally shift
when grasped, but it suffices for these tests. We calculate
the ε-metric for the final grasp, and use the initial hand
configuration (pre-noise) to compute our representations.

2) Noise generation: For all three hands we introduced
noise by changing the pose of the hand relative to the object.
For the Barrett and Shadow hands we also introduced noise
into the joints.

For pose noise we introduced both transitional and ori-
entation noise. The absolute amount of transitional noise
depended on the hand. For orientation we added noise to
the pitch, yaw, and roll, each sampled from a Gaussian with
covariance of σ = 0.1 radians. The maximum translation
noise varied by gripper size. For the PR2 gripper, the position
of the object varied between -2.5 cm to 2.5 cm side to side,
and 5 cm extending outward from the gripper. The Barrett
Hand used a range between -5.0 to 5.0 cm side to side,
with 5 cm outward. For the Shadow Hand, -2 cm to 2 cm
side to side, with a range of 5 cm over the length of the
hand. In all cases, we sampled a Gaussian with covariance
set to σ = 0.02 of the available range. We used a total of 20
unique translations and 64 unique orientations for a total of
1280 pose variations.

For the joint angles we added noise from a Gaussian with
covariance of σJA = 0.1 radians to each joint. We generated
a total of 150 unique variations.

3) Training Data: The resulting training set consists of
one grasp for each object for each of the three hands,
with approximately 20 × 64 + 150 = 1430 variations for
each grasp. For each grasp variation we calculated the
corresponding values for our features and the ε-metric .

4) Deep Learning Model: A Convolutional Neural Net-
work (CNN) was trained on each feature representation. We
choose convolutional models due to the nature of each feature
representation, as neighboring distance values for each patch
of distances are locally correlated. The model consists of
three Convolutional Rectified Linear Layers, followed by two
dense layers. Mean Squared Error loss functions were used
for each regression task.

The inputs to each channel of the CNN for the signed
distance features consist of a 20x20 array of distances (one
for each grid). For the wedge distance feature, each grid point
generated 30 distances, for an overall input size of 600x20.
The number of input channels corresponds to the number
of user-specified seed points (links), resulting in 2, 7, and
15 channels for the PR2 Gripper, Barrett Hand, and Shadow
Hand respectively. The mean με and the variance σ2

ε of the
resultant distribution are the continuous outputs of the CNN.
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Fig. 3: Objects used in the real-world test (top) and the
simulated tests (bottom). Range of grasp variation in the real
world tests is shown on the top right.

The training hyperparameters are standard, consisting of 150
epochs, a batch size of 32, and a learning rate of 0.001.
The architecture to the model can be seen at Figure 4. To
deal with the right skewness of the ε-quality distributions,
we normalize the ε-labels with a logarithmic function. All
testing was done with 3-fold cross validation.

B. Validation test 2: Real-world Grasp Success Prediction

We describe the physical data capture setup, the generated
grasps, and the deep learning model.

1) Physical data capture: We used a 7-DOF WAM arm
equipped with the Barrett Hand to generate our grasp test,
with the objects shown in Figure 3. A Constrained Bi-
directional RRT (CBiRRT) [16] path planner is used to move
the end effector to the starting pose for each grasp.

To ensure consistent placement of the object we used a
north-south magnet on the bottom of the object. A matching
magnet under the table was automatically lifted into place
to “snap” the object into place, then pulled away before the
grasp test.

After grasp execution, the WAM arm lifts the object and
performs a rotation of the wrist joint for 15 seconds. Only
grasps that pass this shake test are marked as successful.

We recorded the Barrett hand joint angles (sampled at
0.2). The signed distance and wedge distance features are
computed based off of the joint angles collected at the last
sample before contact is made with the object.

2) Grasp generation and objects: The 7 objects we used
are shown in Figure 3. To generate our grasp test set
we uniformly varied the translation and orientation of the
hand prior to closing the fingers. We applied 12 translation
samples at a uniform height with respect to the object and
six orientations with ±0.3 radians of roll, ±0.3 radians
yaw induced orientations, and 0.3 and 0.6 yaw induced

Fig. 4: The structure of our CNN. We use three convolutional
layers, followed by two dense layers.

orientations, for a total of approximately 84 variations per
object. (exact numbers in Table I, note that we had 2 each of
the cubes, cylinders and cones, but only one sphere). Some of
the grasp-object variations were discarded due to symmetries
or missing data capture. We generated a total of 572 grasps,
of which 210 were successful.

3) Training Data: We use two methods to expand our
real-world data set: Adding noise to the pose and fine tuning
a model trained off GraspIt! simulations.
Adding noise: We utilize data augmentation to scale from
our base dataset of size 572 grasps to a dataset of 7056
grasps. We inject Gaussian noise into the pose of the hand,
with σXY Z = 0.005 m and σRPY = 0.05 radians.
Fine Tuning: We pre-train on the simulation data from the
previous validation task.

4) Deep Learning Model: We use the same model archi-
tecture described in the previous task (Section IV-A.4). Our
only change is to switch to a binary output representing the
success or failure of a grasp.
Utilizing pre-training data: After training the model on
the simulation data mentioned above, the Convolutional
Rectified Linear Layers are frozen and the fully connected
layers are retrained using just the real-world data.

V. RESULTS

A. Validation test 1: ε-metric

Table II illustrates the performance of our ε-metric approx-
imator. For reference, the average epsilon values over the
entire dataset of grasps executed were με = 0.0239, 0.0193,
and 0.0383, for the Barrett Hand, the PR2 Gripper, and the
Shadow Hand, respectively.

B. Validation test 2: Real-world Grasp Success Prediction

Prediction results are summarized in Table I. We try four
different learning models, and also show results with the
standard εGWS model. The first model uses the predicted
ε-metric values. The remaining three models evaluate the
effect of using just the original 588 grasps, adding noise,
and adding noise and pre-training.

1) The Epsilon Metric: For comparison we include the
ε-metric prediction results for the success of each grasp
executed in the real world. These values were calculated
in GraspIt! from the predicted grasp closure. Following the
work of Allen [4] and DexNet [17], we choose an εGWS

threshold of 0.002, where if the computed ε value is greater
than 0.002 the grasp is marked as successful.
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SDF/Wedge Real-Life Attempts Prediction Accuracy

Shapes Successes Failures εGWS GQ Model 1 GQ Model 2 GQ Model 3 GQ Model 4

Cubes 70 82 65% 61%/63% 64%/57% 74%79% 80%/84%
Cones 17 152 80% 82%/76% 80%/54% 83%/93% 83%/92%

Cylinders 106 75 53% 55%/59% 57%/49% 77%/92% 84%/94%
Ellipses 17 53 42% 40%/43% 63%/59% 76%/79% 83%/82%

TABLE I: Model prediction accuracy for our four learned models (real world data) by object type. Results are given as
SDF/Wedge percentage successful prediction. Left: Number of successful/failed trials per shape.

TABLE II: Simulation Mean Absolute Error

SDF/Wedge MAE με MAE σ2
ε

Shadow Hand 3.91×10−3/ 2.57×10−3 1.19×10−4/ 3.61×10−5

PR2 Gripper 9.2×10−4/ 1.03×10−3 2.86×10−5/ 7.42×10−5

Barrett Hand 1.45×10−3/ 3.29×10−3 3.19×10−5/ 9.2×10−6

2) GQ Model 1: This model is similar to the Epsilon
metric, except we replace the calculated ε value from the
εGWS model with our learned one (Section IV-A.4). This is
a measure of how well our (learned) ε noise model works as
a substitute.

3) GQ Model 2: We train the model just on the data
collected from real life, mapping the feature representations
collected from the near contact stage to the outcome of the
grasp. The training dataset in this case was only 572 grasps.

4) GQ Model 3: In this model we train on the real-world
data with the additional noise samples (Section IV-B.3).

5) GQ Model 4: In this model we utilize both the pre-
training (Section IV-B.4) and the additional noise samples.

VI. DISCUSSION

The accuracy rates for the various approaches described
in the results section are shown in Table I. We make the
observation that the performance of the wedge distance
features correlates strongly with the amount of training data
available, as noticed in Model 2, with an average success
rate of 53%. This is reasonable, as the feature representation
itself is significantly less locally correlated than the Signed
Distance Features. It also suffers from severe sparsity, in
that wedges from the hand that do not intersect with the
object are meaningless, meaning more data is required to
learn something meaningful. While we represent ray ‘miss’
distances with a value of -1, we propose alternative wedge
feature representations with variable-size wedge angles such
that each cone projected from an initial point does not extend
past the surface of the object.

We observe Model 4 on average outperforms all other
models. The fact the data acquired from simulation can so
easily be transferred into the real world implies our feature
representations are far more robust to domain adaptation than
other features extracted from RGB images.

From an analysis of the trials, we note the main failures
of the εGWS to be the lack of consideration for the inherent
instability of the ellipsoid and cylinders, as despite the
correct initial contacts being made on the shapes, the speed
at which the fingers closed resulted in the object toppling. An

approach to solve this would be to use the temporal stream of
our features to train a model capable of predicting whether
the feature gradients are likely to result in unstable object
behaviors.

VII. CONCLUSION

In this work we have proposed two novel feature repre-
sentations for near-contact grasping evaluation and validated
them both in simulation (metric stability) and the real world
(grasp prediction).
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