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Near-contact grasping strategies from awkward poses: When simply
closing your fingers is not enough*
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Abstract— Grasping a simple object from the side is easy
— unless the object is almost as big as the hand or space
constraints require positioning the robot hand awkwardly with
respect to the object. We show that humans — when faced
with this challenge — adopt coordinated finger movements
which enable them to successfully grasp objects even from
these awkward poses. We also show that it is relatively
straight forward to implement these strategies autonomously.
Our human-studies approach asks participants to perform
grasping task by either “puppetteering” a robotic manipulator
that is identical (geometrically and kinematically) to a popular
underactuated robotic manipulator (the Barrett hand), or using
sliders to control the original Barrett hand. Unlike previous
studies, this enables us to directly capture and compare human
manipulation strategies with robotic ones. Our observation is
that, while humans employ underactuation, how they use it is
fundamentally different (and more effective) than that found
in existing hardware.

I. INTRODUCTION

It is difficult to grasp objects with uncertainties, such as
hardware and sensor noise, combined with environmental
constraints. For example, often robot end-effectors end up
in undesirable positions relative to objects due to errors in
sensing and control. A solution to this problem requires
effective control strategies for handling undesirable scenarios
immediately prior to grasping object.

Research in robotic manipulation tends to focus on grasp
detection [1], [2], ideal pre-grasp pose planning [3], [4],
and pre-grasp manipulation before actual grasping if noise
and constraints exist in the environment [5], [6]. All of
these grasp planners fail to focus on the interaction between
robot fingers and the object, as these grasp planners simple
close the robot fingers at the same rate. In this paper we
demonstrate how a few simple finger movement strategies
that are learned from humans reduce the risk of the object
being “knocked out” of the hand during the final stage of
grasping.

In this paper we study how humans control robot fingers
to grasp a handful of simple objects that span a range of sizes
and contact surfaces (see Figure 2, top-left) at increasingly
challenging starting hand poses. We impose constraints on
the system by systematically moving the wrist away from
the “ideal” pose — where the principal axes of the object is
aligned with the palm [7].
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Fig. 1. From left to right: Hand for puppeteering, original Barrett hand,
participant grasping object with the puppeteered hand, and slider box used
to control fingers.

Contributions: 1) We develop a human-studies method-
ology that supports analysis of the grasping strategies em-
ployed. This methodology allows us to largely separate the
strategies from the “hardware” (i.e., human hand) used to im-
plement them. 2) The ability to collect human demonstration
data on a robotic hand in a form that is directly applicable
to design a simple robotic grasping controller, without the
need for an intermediate mapping. 3) Enumeration of several
strategies for extending the range of grasping in noisy or
constrained environments.

II. RELATED WORKS

Human grasping has been studied extensively in an effort
to improve robot systems. Approaches include detailed case
studies [8] and crowd-sourced surveys [9]. These findings
were then organized into taxonomies based on object size and
shape, such as the GRASP taxonomy [10]. This taxonomy
represents grasps in optimal conditions — giving us an intu-
ition on hand shaping and positioning for various ‘primitive’
objects.

Grasping has been studied with motion capture sys-
tems [11]; however, these studies only used the data for finger
placement on the object, not finger closing. These studies let
the human position the wrist in the ideal position.

In non-optimal, or cluttered scenarios Dogar et al. im-
plemented a push-grasping strategy to successfully grasp
objects in clutter [12], [13]. This technique was also robust to
uncertainty to object position within a graspable region [12].
Others developed frameworks to reposition objects into a
graspable region [5], [14]. Other approaches utilize hand pre-
shape adjustments and environmental constraints to constrain
objects during grasping when in non-optimal scenarios [15],
[16]. A caging grasp can also work in these scenarios [4].
Chang et al show that humans tend to apply manipulation
strategies to adjust the object pose if necessary before they
pick up an object [6]. All of these efforts focus on positioning
the wrist or pre-manipulating the object to improve grasping;
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our focus is on improving finger movement once the wrist
position is given.

III. STUDY METHODOLOGY

In this section we describe the data collection process from
the robot and the human subjects study protocol.

Our overall goal is to improve finger movement strategies
by studying how humans adapt to structured perturbation
from the location where the object is centered relative to
the palm. We chose a side grasp as our base case and
systematically moved the wrist away from this ideal location.
We also used both flat and curved objects at the smaller and
larger limits of graspability (see Figure 2) to capture variation
in object shape and contact surfaces.

A. Objects

The objects are shown in Figure 2; note that the cylinders
were placed both upright and on their sides, for a total of
3+3+3 =9 unique objects (3 sizes for each object). The
object’s sizes were based on a previous study [9] that estab-
lished the maximum and minimum graspable sizes for the
BarrettHand. For each object we selected three sizes (small,
average, and large) based on the graspable width/length for
a side grasp in [9]. The objects were printed from PLA
plastic, except for the largest objects, which are made from
cardboard and covered with duct tape. Each object weighs
less than 1 1b, with the large objects’ weight roughly twice
the smaller ones.

B. Pose perturbations

As described in [9], hand pose perturbations are expressed
in terms of the geometric relationship between the object
and the hand, and on graspable ranges. Sampling in each di-
rection was chosen to minimize the number of perturbations
while ensuring a gradual transition in grasping difficulties, as
measured by success rates for the human and robot. Refer to
Figure 2, right, which shows the extremes of the perturbation
ranges.

All objects start at the position aligned with the robot
hand, with the distance between each object and the palm
varying with the object size: d = 1.5,2.5,and3.5cm for the
small, medium and large objects respectively. Our three
position variations are as follows. Moving left to right,
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All objects (upper left) and the base pose (lower left). Remaining figures demonstrate min and max ranges for each perturbation (small cube).

x € (—6cm,6cm) with step-size 6, = 2cm. Moving up to
down, y € (—2cm, 8cm) with increment d, = 2cm. Note that
Ocm in y puts the middle of the hand roughly in the middle
of the object, and —2cm puts the hand resting on the table.
Moving in-out with z € (2cm,8cm) by step-size J; = 2cm.

The three orientation variations were: Tilting left-right
(roll), v € (—45deg,45deg), step-size &y = 15deg, rotating
left-right (yaw) 6 € (—30deg,30deg), step-size 8y = 15deg,
and rotating up-down (pitch) y € (—15deg,45deg), step-size
0y = 15deg. Note that pitch is not symmetrical because the
hand bumps into the table.

These variations resulted in a total of 74+4+4+4+7+4+
4 =29 pose perturbations per object, for a total of 929 =
261 grasp trials for each condition. To ensure consistent
initial placement of each object we used a marked piece of

paper.
C. Robot protocol

We used a commercial Barrett WAM arm with the
patented, underactuated Barrett hand (BH-280). The Barrett
hand was moved to each sampled pose with the fingers fully
opened. The robot grasped the object by closing all of its
fingers simultaneously over approximately 1 second. When
the joint angles quit changing (no change for 4 samples,
recorded at 9 Hz) we declared the grasp “done” and applied a
“shake test” [17]. This test consisted of lifting the robot hand,
then shaking and rotating it slowly, over approximately 5
seconds (see video) [17]. A grasp was marked as successful
only if the object was still in the grasp after the test.

D. Human subject protocol

Two robot hands were used in the human studies: 1) The
commercial Barrett with custom slider control box to control
each finger (right of Figure 1), and 2) A 3D printed replica
of the Barrett hand without joint limitations which study
participants could puppet (as described in previous work
[18]) (middle of Figure 1). The purpose of using these two
hands is to compare human strategies between hands with
limited and completely free finger movement.

The human trials used the same poses and variations as
the robotic one. For the shake test with the 3D printed robot
hand (posable hand) participants were asked to maintain the
grasp during the lift and shake, with gravity compensation
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Observed human strategies: From left to right: Spreading the fingers to increase surface contact, nudging the object in with one finger before

grasping, pre-shaping the fingers to the object and closing them so they come into contact at the same time.

H Hardware Total successful poses  Success rate H
Robot 173 66.28%
Human Barrett Slider 207 79.31%
Human Posable 220 84.29%
Barrett PID 188 72.03%
TABLE 1

SUCCESS RATE OUT OF 261 PERTURBATION POSES.

on to assist in the lift. Note that the study overseer placed
the fingers back to the starting position and ensured partic-
ipants did not apply excessive force during the shake test.
Participants were allowed two tries and a maximum of two
minutes to complete each grasp trial. Note that a grasp trial
is successful if the majority of the people succeeded.

We captured the joint angles of the posable hand at a sam-
pling rate of 2 Hz (versus 9 Hz for the Barrett Hand). This
lower sampling rate still suffices to capture what happened
because the humans tended to move the fingers fairly slowly.

1) Human subjects: We had 12 human participant and
they showed no qualitative nor quantitative differences in
ability. We split the starting poses into two groups; those
the robot succeeded at, and those it failed. 5 subjects used
the posable hand on the successful trials, 5 subjects used
the posable hand on the failed trials, and the last 2 subjects
did the failed trials with the Barrett hand using the sliders.
The small sample sizes are generally not an issue because
humans tend to perform very similarly [18], [19].

Each grasp trial took 30 seconds on average. Total session
time for each human subject was 1-2 hours. In total we
captured 1305 trials with 3D printed posable hand, and 176
trials with Barrett hand from human subjects.

IV. DATA ANALYSIS

We use the joint angles of the proximal link, the distal link,
and finger spread to analyze the movement of the fingers, and
the moments when they curl in, move out or stop. Note that
Figure 5 shows the joint angles in Figure 4. Each trial was
labeled with the object size, shape and pose perturbation.
We additionally aggregated data based on variance from the
“base” grasp (value - base value / max). The fingers are
labeled in Figure 1.
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Fig. 4. A grasp at one extreme (positive 6 cm in x) where the robot
failed but human participants succeeded with the Barrett (top) and posable
(bottom) hands.
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Fig. 5. Finger movement (joint angles) for controlled robot, human using
slider, and human using posable hand during a grasp. Red circles indicate
joint angles of final grasp poses

A. Barrett hand data analysis

For each finger of the Barrett hand we identified the first
contact (when the distal joints start to change drastically
and the proximal joints stop increasing) and the final grasp
(both joints stop moving). We fit an actuation curve to the
sampled data to better estimate the actual time of contact
and of movement stoppage.

B. Posable hand data analysis

The posable data is substantially more stochastic than the
underactuated Barrett one because participants were allowed
to move each finger joint freely. We first filter the data with
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a moving average of 5 samples to mitigate noise, and then
label the moments where finger movements start and stop.

We again identify a first-contact and final-grasp time point.
The final-grasp time point is easy to identify because the
joint angles remain stable during the 5 second shake test.
We define the first-contact point as when the proximal joint
has been moved. Although it does not always seem to be the
case, this is typically the first contact from observation.

In addition we further analyzed the data to determine the
ratio of time each finger moved and spread as opposed to
move simultaneously. We also measured the total radians
moved by each finger to quantify how participants interacted
with fingers and object during a grasp trial. Specifically, for
the posable hand, we further classify grasping motion by the
change of distal joint angles in each grasp trial. This captured
a commonly-seen behavior where participants straightened
fingers before or after bending them. To analyze how the
finger pre-shapes used in the posable hand differed from
the Barrett we note that the distal joint moves with the
proximal joint at a reduced rate (1:3 radians). Any shapes
that differ from this ratio (pre-contact) are not achievable
with the Barrett Hand (this was true most of the time).

V. RESULTS

We present three sets of results: 1) Overall statistics,
patterns and differences for the robotic and human data sets.
2) Three observed human strategies (shown in Figure 3) that
can be mapped to either hand. 3) The increase in capabilities
of the 3D-printed posable hand over the Barrett hand.

A. Overall performance in all grasp trials

Our main observation is that humans were able to improve
performance at perturbation by 13% and 18% with Barrett
hand and posable hand respectively (see Table I). The robot
success rate was 66%. The participants succeeded with the
same hand on an additional 13% of all trials when able to
control each finger individually. Full control of both distal
and proximal joints resulted in an additional 5% success rate.
Overall, both humans and robots had similar success rates
at hand positions in x,y,z for the small and medium objects,
but not for the large objects. Across the board, humans were
more successful with orientation variations.

B. Control strategies

We identify three control strategies (see Figure 3) in both
conditions (human using posable and underactuated hands).
1) [pre-shape] Move the robot fingers to align with the
object’s principle axes; 2) [nudge] Use the robot fingers

Example perturbations where the participants utilized spreading: Pitch (cylinders), y (side-ways cylinders), and roll (big cube).

to manipulate the object closer to the center of the hand;
3) [spread] Spread the robot fingers to improve the contact
surface. Note that these control strategies were implemented
before the final grasp.

The choice of strategy depended on object size, weight
and position. Nudging was used to shift the object toward
the palm and was used mostly with the smaller, lighter
objects. Pre-shaping was used on the larger, heavier objects.
These strategies appear more frequently as the perturbations
become higher.

1) Pre-shape and nudge: In Figure 7, nudging smaller
and light-weight objects was achieved with either one of
the fingers, with the final grasp being relatively symmetric
(object in the middle of the hand. In contrast, as the object’s
size and weight increase, participants began to execute pre-
shaping by moving the robot fingers to align with the object.
This appears as a larger difference in the joint angles of
the final grasp pose with increasing perturbation in x, and
is also more pronounced with the bigger cube, as shown in
Figure 3). Note that using the simple finger control algorithm
(closing with the same rate) did not show significant joint
angle differences in the final pose.

Note, too, that the distance travelled (expressed as ratio of
the movement) by the two fingers versus the thumb shifts. In
other words, note that at —6 cm, the two fingers have to shift
more to reach the object, whereas at 6 cm it is the thumb
that has to travel more. This pattern is very clear in the big
cube; while the medium cube is a hybrid strategy of nudge
and pre-shape.

2) Spread finger to adjust contact surface: Our hu-
man participants spread the fingers to increase surface
area/contact, mainly for the purpose of stabilizing the grasp.
Plots of the spread angle versus perturbation for these
cases are shown in Figure 6, with example grasps shown
in Figure 10. In the example of large and medium cube
(leftmost plot in Figure 10), increasing Y increased finger
spread in order to create a wider grip around the object.
Finger spread was also used when the hand was pitched
around the vertical cylinder or raised up vertically on the
horizontal cylinder. Note that the use of spread for pitch
on vertical cylinder, as well as move vertically on horizontal
cylinder, was dependent upon the size of the object. It is less
effective on the large vertical cylinder (pitch), but exhibits
stabilization on the large horizontal cylinder (y).

C. Full actuation versus underactuation

Prior work showed that humans do not use underactuated
finger shapes for difficult grasping tasks if given a choice
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hand but succeeded with the posable Barrett hand. Note that the posable
hand formed larger contact surface areas than the Barrett hand (red circles
indicates contacts made by hand)

[18]. Overall performance (Table I) shows that even in a
simple side grasp full actuation increases success rates by
5%.

Control Scheme: Our setup allowed participants to move
each joint angle independently, or simultaneously through
placing the hand along the length of the finger. Using the
finger loop to shape the distal joint also tended to move the

proximal joint at the same time. That said, the percentage of
time participants moved both the proximal and distal joints at
the same time was just 28%, SD = 35. They moved just the
distal joint first approximately 20% of the time (F1: 23%,
F2: 22.5%, Th: 20.0%. Therefore, from a control strategy
standpoint, participants often focused on moving one finger
joint at a time.

Hand Pre-shape: Qualitatively, we observed participants
disobeying underactuation behavior in the following cases:
Bending the distal joint backwards so that the entire front
face of distal link could touch the object, and straightening
distal links to be parallel with proximal link to nudge or
grasp the object.

The left plot of Figure 8 shows that the medium-sized
shapes show the most deviation from the underactuation
scheme, as it offers the most opportunity to match the
finger shape to the object’s surface. The grasp completed
on small shapes by posable hand was similar to the actuated
Barrett hand, while fingers were hardly adjusted around large
shapes.Figure 9 shows a grasp where the underactuation
scheme failed but the full actuation scheme succeeded.

In the right side of Figure 8, we also summarize the overall
deviation for each object type (x perturbation). The side-lying
cylinder offered the most surfaces that were not aligned with
the default underactuation pre-shape.

VI. CONTROLLER IMPLEMENTATION

In this section we describe our three simple PID con-
trollers, one for each observed strategy. Which strategy to
use is determined by when the humans used it, which is
based on the size of the object (small, medium, large), and
perturbation axis (x,y,z,roll,pitch and yaw). These controllers
are closed-loop controllers using computer vision (Intel re-
alsense ZR300 camera), to track object in real time. See
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video for a demonstration of all controllers.

“Nudge” finger control strategy: This strategy manip-
ulates the object towards the center of the hand by gently
pushing it. We designed a PID controller that continuously
tracks the object position and moves the finger in until the
object is centered. This controller was used in the x and yaw
(0) extremes for the small and medium-sized objects.

“Pre-shape” finger control strategy: The pre-shape strat-
egy first moves the closest finger(s) to just touch the object,
which aligns the fingers with it (again using the camera
to track the object position). The controller next brings
the opposite finger(s) into contact with the object from the
opposing side before tightening the grasp. This controller is
applied to large objects that are shifted in the x axis or rotated
in yaw (0).

“Spread” finger control strategy: This controller simply
spreads the fingers by a certain amount (based on observed
human values) before closing its fingers. This is used for the
following objects (all sizes): horizontal cylinder (spread in
y), vertical cylinder (spread in pitch), cube (spread in roll).

Validation: We applied the appropriate controller to the
perturbations where the simple robot finger closing strategy
failed but the human succeeded. This resulted in a 6%
improvement (see Table I). Note that, although humans often
employed a mix of controllers, for this test we only chose
the dominant observed one.

VII. DISCUSSION

In summary, we have demonstrated that a human-subjects
study structured around controlled task perturbation can elicit
potential control strategies for improving grasping from awk-
ward poses in the real world. We identified three strategies
and implemented them as simple PID controllers, improving
grasp performance.

Similar to [18], our human studies show that additional
degrees of freedom (eg, control of each individual link)
both improves grasping performance and changes control
strategies. For example, humans tended to straighten distal
links to improve the contact surface or provide nudging
forces in the correct direction. Participants are also able to
provide more nuanced force at the fingertips; future work
will investigate what effect this has.

A. Future work

Our PID controllers were very simple and we simply
picked one based on the pre-dominant human strategy. We
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note that, although we used simple objects and one type of
grasp, the controllers are potentially usable for a broader
range of grasp directions and objects. In future work we
propose 1) Learning when and how to employ a specific con-
troller by analyzing the hand-object geometry and matching
it to our examples and 2) Use machine learning to better
map the observed behavior to novel contact points.
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